

Single-Crystal Growth of Ln_2MIn_8 ($\text{Ln} = \text{La, Ce}$; $\text{M} = \text{Rh, Ir}$): Implications for the Heavy-Fermion Ground State

Robin T. Macaluso,[†] J. L. Sarrao,[‡] N. O. Moreno,[‡] P. G. Pagliuso,[‡] J. D. Thompson,[‡] Frank R. Fronczeck,[†] M. F. Hundley,[‡] A. Malinowski,[‡] and Julia Y. Chan^{*,†}

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, and Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Received October 28, 2002. Revised Manuscript Received January 16, 2003

The structures of the heavy-fermion compounds, Ce_2MIn_8 ($\text{M} = \text{Rh, Ir}$), and the nonmagnetic analogues, La_2MIn_8 ($\text{M} = \text{Rh, Ir}$), were determined by single-crystal X-ray diffraction. These materials adopt a tetragonal structure in the space group $P4/mmm$, $Z = 1$. Lattice parameters are $a = 4.6670(4)$ Å and $c = 12.247(4)$ Å for Ce_2RhIn_8 , $a = 4.6897(6)$ Å and $c = 12.1950(11)$ Å for Ce_2IrIn_8 , $a = 4.6980(2)$ Å and $c = 12.3440(4)$ Å for La_2RhIn_8 , and $a = 4.70600(10)$ Å and $c = 12.3120(4)$ Å for La_2IrIn_8 . Antiferromagnetism and/or unconventional superconductivity at low temperature have been found in CeCoIn_5 , CeRhIn_5 , CeIrIn_5 , and Ce_2RhIn_8 . We compare structural trends with properties of the ground states of these materials. The $\text{Ln}_n\text{MIn}_{3n+2}$ ($n = 1, 2, \infty$; $\text{Ln} = \text{La, Ce}$; $\text{M} = \text{Rh, Ir}$) intergrowth homologous series presents a unique opportunity to study structure–property relationships in this new family of heavy-fermions.

Introduction

Superconductivity in heavy-fermion materials is unconventional because the conduction electrons are strongly coupled with the magnetic moments of the f -electrons.¹ At room temperature, heavy-fermion materials behave as normal metals in which the f -electrons interact weakly with conduction electrons and display local-moment magnetic properties, but at low temperatures ($T \leq 20$ K), unique and interesting properties appear. The strong hybridization between conduction electrons and f -electrons results in an enhanced linear-in-temperature contribution to the Sommerfeld coefficient of specific heat, γ , (with γ typically ≥ 400 mJ/mol K²). This corresponds to the conduction electrons having an effective mass that is typically 100 times that of a free electron, hence the term, “heavy-fermion.”² The hybridization that produces heavy-fermion properties derives from the local coordination of the f -electron ion.

The properties of the new intergrowth homologous series, $\text{Ce}_n\text{MIn}_{3n+2}$ ($n = 1, 2$; $\text{M} = \text{Co, Rh, Ir}$) have been recently reported and present a unique opportunity to investigate the structure–property relationships of these heavy-fermion superconductors.^{3–5} CeCoIn_5 and CeIrIn_5 are superconducting at 2.3 and 0.4 K, respectively, while CeRhIn_5 superconducts at 2.1 K under applied pressures of 16 kbar.^{4,5} At ambient pressure, CeRhIn_5 is a heavy-fermion antiferromagnet with an incommensurate magnetic structure and $T_N = 3.8$ K.^{3,6,7}

Similar to CeRhIn_5 , Ce_2RhIn_8 orders antiferromagnetically at $T_N = 2.8$ K at ambient pressure, but superconductivity with $T_c \sim 2$ K can be induced with the application of ~ 25 kbar of pressure.⁸ The Sommerfeld constant $\gamma \approx 400$ mJ/mole K² of Ce_2RhIn_8 is also comparable to that of CeRhIn_5 . The fact that the superconducting transition temperature is higher in CeRhIn_5 and Ce_2RhIn_8 than in CeIn_3 and the nature of magnetic structure in these materials have been attributed to their quasi-layered structure relative to CeIn_3 .

Ce_2IrIn_8 , on the other hand, remains paramagnetic to lowest temperatures. Although it has a Sommerfeld coefficient similar to that of CeIrIn_5 ($\gamma \approx 700$ mJ/mol K²), it does not display superconductivity. Although it is not the subject of this paper and its ground-state properties are unknown, polycrystalline Ce_2CoIn_8 has been synthesized and found to be isostructural to the Rh and Ir compounds.

CeIn_3 (the “parent” and $n = \infty$ member of $\text{Ce}_n\text{MIn}_{3n+2}$) is cubic and undergoes a commensurate antiferromagnetic transition at $T_N = 10.23$ K.^{9,10} It also becomes

(3) Hegger, H.; Moshopoulou, E. G.; Hundley, M. F.; Sarrao, J. L.; Fisk, Z.; Thompson, J. D. *Phys. Rev. Lett.* **2000**, *84*, 4986.

(4) Petrovic, C.; Pagliuso, P. G.; Hundley, M. F.; Movshovich, R.; Sarrao, J. L.; Thompson, J. D.; Fisk, Z.; Monthoux, P. *J. Phys.: Condens. Matter* **2001**, *13*, L337.

(5) Petrovic, C.; Movshovich, R.; Jaime, M.; Pagliuso, P. G.; Hundley, M. F.; Sarrao, J. L.; Fisk, Z.; Thompson, J. D. *Europhys. Lett.* **2001**, *53*, 354.

(6) Bao, W.; Aeppli, G.; Christianson, A. D.; Fisk, Z.; Hundley, M. F.; Lacerda, A. H.; Lynn, J. W.; Pagliuso, P. G.; Sarrao, J. L.; Thompson, J. D. *World Scientific* **2002**, In press.

(7) Bao, W.; Pagliuso, P. G.; Sarrao, J. L.; Thompson, J. D.; Fisk, Z.; Lynn, J. W. *Phys. Rev. B* **2002**, *64*, 020401(R).

(8) Nicklas, M.; Sidorov, V. A.; Borges, H. A.; Pagliuso, P. G.; Petrovic, C.; Fisk, Z.; Sarrao, J. L.; Thompson, J. D. <http://xxx.lanl.gov> 2002, arXiv:cond.

* Corresponding author e-mail: julia.chan@chem.lsu.edu.
† Louisiana State University.
‡ Los Alamos National Laboratory.

(1) Fisk, Z.; Ott, H. R.; Rice, T. M.; Smith, J. L. *Science* **1986**, *320*, 124.
(2) Cornelius, A. L.; Pagliuso, P. G.; Hundley, M. F.; Sarrao, J. L. *Phys. Rev. B* **2002**, *64*, 144411.

superconducting between 24 and 27.5 kbar pressure with the sharpest transition at $T_c = 0.204$ K and 27.5 kbar.^{11,12} The low-temperature linear contribution to specific heat of CeIn_3 is $\gamma \approx 120$ mJ/mol K².^{13–15}

The principal focus of this work is the growth and structural characterization of the $n = 2$ members of the $\text{Ce}_n\text{MIn}_{3n+2}$. The La analogues of these Ce compounds have also been prepared with the aim of understanding which structural trends derive specifically from the presence of an f -electron in the Ce compounds. In this study, the structure and magnetic properties of the $n = 1, 2, \infty$ members of the intergrowth homologous series of compounds, $\text{Ln}_n\text{MIn}_{3n+2}$ ($\text{Ln} = \text{La, Ce}$; $\text{M} = \text{Rh, Ir}$) are compared. This allows for a more complete understanding of the relationship between magnetism and superconductivity and of why certain structure types favor heavy-fermion superconductivity.

Experimental Section

Synthesis. La (99.999%) and Ce (99.999%) metals obtained from Ames Laboratory, and In ingot (Alfa Aesar, 99.9995%), were cut into small pieces. Rh (Alfa Aesar, –20 mesh, 99.95%) and Ir (Alfa Aesar, –60 mesh, 99.95%) powders were used as received.

Ln_2MIn_8 ($\text{Ln} = \text{La, Ce}$; $\text{M} = \text{Rh, Ir}$) single crystals were grown from excess In flux. Stoichiometric amounts of $\text{Ln} = \text{La, Ce}$ and $\text{M} = \text{Rh, Ir}$ were combined with excess In in an alumina crucible, which was then encapsulated in an evacuated quartz ampule. The evacuated quartz ampule was heated at 1100 °C for 2 h and slow-cooled at a rate of 8 °C/h to 650 °C. At this temperature, the ampule was removed from the furnace, and excess In flux was removed by centrifugation.¹⁶

Single-Crystal X-ray Diffraction. The $\sim 1 \times 2$ mm metallic platelike crystals were mechanically separated for structural analysis. All of the crystals were stable in air, and no noticeable degradation of the sample was observed in magnetic measurements.

A black single-crystal fragment of each compound was used for data collection on a Nonius KappaCCD diffractometer (Mo K_α , $\lambda = 0.71073$ Å). Data were collected at 298 K. Further data collection parameters and crystallographic data are presented in Table 1.

The structures were solved with direct methods and refined using SHELXL97¹⁷ beginning with the atomic positions of Ho_2CoGa_8 as the initial structural model.¹⁸ Data were corrected for extinction and refined with anisotropic displacement parameters. The atomic coordinates are provided in Table 2, and relevant interatomic distances are given in Table 3.

Largest features in the final difference maps are $8.18 \text{ e}^-/\text{\AA}^3$ for Ce_2RhIn_8 , $6.6 \text{ e}^-/\text{\AA}^3$ for Ce_2IrIn_8 , $15.9 \text{ e}^-/\text{\AA}^3$ for La_2RhIn_8 ,

and $31.8 \text{ e}^-/\text{\AA}^3$ for La_2IrIn_8 . Low-temperature (100 K) data were also collected, and the large features existed in these difference maps. These residual electron densities are higher than expected, even for lanthanide-containing compounds. When a light atom, such as O, is placed in that position, the refinement gives a slightly less than fully occupied site (~97% for La_2RhIn_8), and the R -value changes very little. Furthermore, the electron-density peaks are at $(\frac{1}{2}, \frac{1}{2}, 0)$, a $4/mmm$ site approximately octahedrally surrounded by In atoms. In Ce_2RhIn_8 , five of the In atoms were located 2.35 Å from this electron density, and the sixth In was 2.42 Å away. This hole is too small for a heavy element, such as In, to occupy the site. The electron density may suggest an interstitial presence of a small-Z atom; therefore, we also conducted microprobe analysis to address the possible presence of C, N, or O.

Electron Microprobe Analysis. To determine the presence of an interstitial atom, we examined a single crystal of each compound: Ce_2RhIn_8 , Ce_2IrIn_8 , La_2RhIn_8 , and La_2IrIn_8 . Analyses were performed on a JEOL733 Superprobe at 15 kV accelerating potential and 10 nA beam current. WDS scans were made on diamond and BN standards at 1.0 s/point in 5-μm intervals. After locating the C and N peak positions, we found no evidence for the presence of C, N, or O. Because other evidence of the presence of a light atom cannot be found, and given the crystal quality of the sample, we suspect that the residual electron densities may be due to systematic error. A number of crystal growth attempts yielded similar crystal quality.

Physical Properties. Electrical resistivity and magnetic susceptibility data were obtained using commercial measurement systems from Quantum Design (PPMS and MPMS, respectively). Data were collected over a temperature range of 2 K to 350 K.

Results and Discussion

The structures of LnMIn_5 ($n = 1$; $\text{Ln} = \text{La, Ce}$; $\text{M} = \text{Co, Rh, Ir}$) have been previously described in detail.^{19–21} The structure consists of one LnIn_3 cuboctahedra layer interleaved with one MIn_2 layer. As the transition metal progressively increased in size, the height of the cuboctahedra along the c -axis decreased while the length across the $a-b$ plane increased. Interestingly, the LnIn_3 ($\text{Ln} = \text{La, Ce}$) cuboctahedra in LnMIn_5 were distorted for the $\text{M} = \text{Co, Ir}$ members, but were least distorted for $\text{M} = \text{Rh}$. The cuboctahedra in LnRhIn_5 ($\text{Ln} = \text{La, Ce}$) bear a striking resemblance to the cubic structure of LnIn_3 but are distorted for LnCoIn_5 and LnIrIn_5 .²¹ Thus, one might speculate that the reason that CeRhIn_5 orders magnetically ($T_N = 3.8$ K) while CeIrIn_5 and CeCoIn_5 superconduct (at 0.4 and 2.3 K, respectively) is related to this distortion.

Ln_2MIn_8 ($\text{Ln} = \text{La, Ce}$; $\text{M} = \text{Rh, Ir}$) crystallize in the tetragonal space group, $P4/mmm$ (no. 123) with the Ho_2CoGa_8 structure type.¹⁸ The structure can be viewed as a bilayer of LnIn_3 cuboctahedra layers alternating with MIn_2 rectangular polyhedra layers along the c -axis. The unit cell is shown in Figure 1, and the extended structures of the $\text{Ln}_n\text{RhIn}_{3n+2}$ family ($n = 1, 2, \infty$; $\text{Ln} = \text{La, Ce}$) are compared in Figure 2. Atomic positions of Ln_2MIn_8 ($\text{Ln} = \text{La, Ce}$; $\text{M} = \text{Co, Rh, Ir}$) are presented

(9) Buschow, K. H. J.; de Wijn, H. W.; van Diepen, A. M. *J. Chem. Phys.* **1969**, *50*, 137.

(10) Thompson, J. D.; Movshovich, R.; Fisk, Z.; Bouquet, F.; Curro, N. J.; Fisher, R. A.; Hammel, P. C.; Hegger, H.; Hundley, M. F.; Jaime, M.; Pagliuso, P. G.; Petrovic, C.; Phillips, N. E.; Sarrao, J. L. *J. Magn. Magn. Mater.* **2001**, *226*–230, 5.

(11) Mathur, N. D.; Grosche, F. M.; Julian, S. R.; Walker, I. R.; Freye, D. M.; Haselwimmer, K. W.; Lonzarich, G. G. *Nature* **1998**, *394*, 39.

(12) Knebel, G.; Braithwaite, D.; Canfield, P. C.; Lapertot, G.; Flouquet, J. *Phys. Rev. B* **2001**, *65*, 02445.

(13) Satoh, K.; Fujimaki, Y.; Umehara, I.; Itoh, J.; Onuki, Y.; Kasaya, M. *Physica B* **1993**, *186*–188, 658.

(14) Benoit, A.; Boucherle, J. X.; Convert, P.; Flouquet, J.; Palleau, J.; Schweizer, J. *Solid State Commun.* **1980**, *34*, 293.

(15) Berton, A.; Chaussy, J.; Chouteau, G.; Cornut, B.; Flouquet, J.; Odin, J.; Palleau, J.; Peyard, J.; Tournier, R. *J. Phys.* **1979**, *40*, 325.

(16) Canfield, P. C.; Fisk, Z. *Philos. Mag. B* **1992**, *65*, 1117.

(17) Sheldrick, G. M. *SHELXL97*; University of Gottingen: Germany, 1997.

(18) Grin, Y. N.; Yarmolyuk, Y. P.; Gladychevskii, E. I. *Sov. Phys. Crystallogr.* **1979**, *24*, 137.

(19) Moshopoulou, E. G.; Fisk, Z.; Sarrao, J. L.; Thompson, J. D. *J. Solid State Chem.* **2001**, *158*, 25.

(20) Moshopoulou, E. G.; Sarrao, J. L.; Pagliuso, P. G.; Moreno, N. O.; Thompson, J. D.; Fisk, Z.; Ibberson, R. M. *Appl. Phys. A, Mater. Sci. Proc.* **2002**, *74*, S-895–S-897.

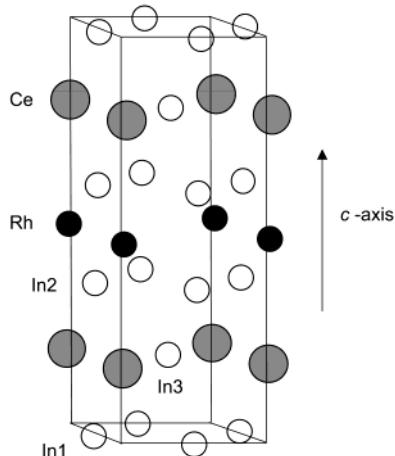
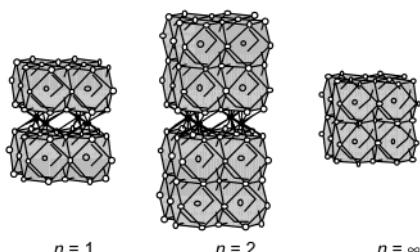
(21) Macaluso, R. T.; Sarrao, J. L.; Pagliuso, P. G.; Moreno, N. O.; Goodrich, R. G.; Browne, D. A.; Fronczeck, F. R.; Chan, J. Y. *J. Solid State Chem.* **2002**, *166*, 245.

Table 1. Crystallographic Parameters for Ce_2RhIn_8 , Ce_2IrIn_8 , La_2RhIn_8 , and La_2IrIn_8

Crystal Data		Ce_2RhIn_8	Ce_2IrIn_8
formula		4.6670(4)	4.6897(6)
a (Å)		12.247(4)	12.1950(11)
c (Å)		266.75(12)	266.07(5)
V (Å ³)		1	1
Z		25	25
temperature (°C)		8.013	8.681
density (g cm ⁻³)		0.075 × 0.025 × 0.075	0.075 × 0.050 × 0.025
crystal dimension (mm ³)		tetragonal	tetragonal
crystal system		$P4/mmm$	$P4/mmm$
space group		2.5–45.3	2.5–35.0
θ range (°)		26.703	37.711
μ (mm ⁻¹)			
Data Collection			
measured reflections		1129	1204
independent reflections		703	408
reflections with $I > 2\sigma(I)$		606	372
R_{int}		0.032	0.068
h		-9 → 9	-7 → 7
k		-6 → 6	-7 → 7
l		-23 → 24	-19 → 19
Refinement			
R [$F^2 > 2\sigma(F^2)$]		0.042	0.047
wR (F^2)		0.1012	0.108
reflections		703	408
parameters		17	17
$\Delta\rho_{\text{max}}$ (e Å ⁻³)		8.12	6.6
$\Delta\rho_{\text{min}}$ (e Å ⁻³)		-2.9	-2.9
extinction coefficient		0.0073(8)	none
Crystal Data			
formula		La_2RhIn_8	La_2IrIn_8
a (Å)		4.6980(2)	4.70600(10)
c (Å)		12.3440(4)	12.3120(4)
V (Å ³)		272.447(19)	272.667(12)
Z		1	1
crystal dimension (mm ³)		0.075 × 0.012 × 0.075	0.10 × 0.050 × 0.075
temperature (°C)		25	25
density (g cm ⁻³)		7.919	8.456
crystal system		tetragonal	tetragonal
space group		$P4/mmm$	$P4/mmm$
θ range (°)		3.3–45.3	2.5–40.2
μ (mm ⁻¹)		25.63	36.29
Data Collection			
measured reflections		2197	1697
independent reflections		730	579
reflections with $I > 2\sigma(I)$		592	570
R_{int}		0.065	0.054
h		-9 → 9	-8 → 8
k		-6 → 6	-6 → 6
l		-22 → 24	-22 → 20
Refinement			
R [$F^2 > 2\sigma(F^2)$]		0.059	0.054
wR (F^2)		0.151	0.142
reflections		730	579
parameters		17	17
$\Delta\rho_{\text{max}}$ (e Å ⁻³)		15.9	31.8
$\Delta\rho_{\text{min}}$ (e Å ⁻³)		-4.1	-7.6
extinction coefficient		0.015(2)	0.016(2)

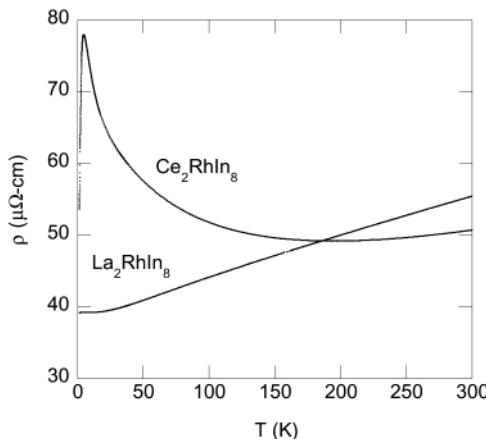
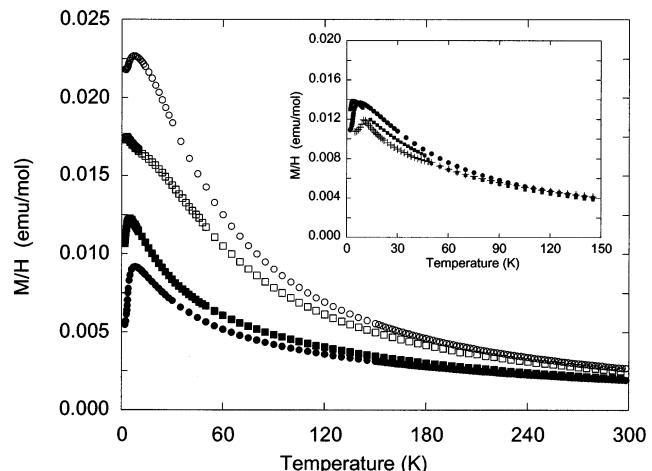
$$^a R_1 = \sum |F_0| - |F_c| / \sum |F_0|. \quad ^b wR_2 = \sum [w(F_0^2 - F_c^2)] / \sum [w(F_0^2)]^{1/2}.$$

in Table 2. The z coordinates of the $2g$, $4i$, and $2h$ sites are variable for Ce, In2, and In3, where In2 and In3 correspond to the In atoms that are bonded to the MIn_2 and LnIn_3 layers, respectively.



The bond distances describing the cuboctahedra in Ln_2MIn_8 ($\text{Ln} = \text{La, Ce}; \text{M} = \text{Rh, Ir}$) are listed in Table 4. Ce is located at the center of each cuboctahedron. Ce and In3 are across the $a-b$ plane, but the two atoms are not strictly coplanar as in LnIn_5 . (Ce–In1) is the bond between the Ce and the In atom (In1) between the two CeIn_3 layers. (Ce–In2) describes the bond between

Ce and the In atom (In2) that is shared with the MIn_2 ($\text{M} = \text{Rh, Ir}$) layer.

Selected interatomic distances of the cuboctahedra layer in Ln_2MIn_8 compounds are shown in Table 3. The width of the cuboctahedra along the $a-b$ plane (Ln–In3) and part of the cuboctahedra height along the c -axis (Ln–In2 distance) are smaller for the Ir than the Rh compound. In the LnIn_5 phase however, the cuboctahedra width is larger for Ir. However, Ln_2MIn_8 contains a third crystallographically independent In atom whose distance to the next cuboctahedra layer (Ln–In1) in-



Table 2. Atomic Positions of Ln_2MIn_8 ($\text{Ln} = \text{La, Ce}$)

atom	<i>x</i>	<i>y</i>	<i>z</i>
Ln	2 <i>g</i>	0	0
Rh	1 <i>b</i>	0	1/2
In1	2 <i>f</i>	1/2	0
In2	4 <i>i</i>	1/2	0
In3	2 <i>h</i>	1/2	1/2
compound	<i>z</i> Ln	<i>z</i> In2	<i>z</i> In3
Ce_2RhIn_8	0.80704(3)	0.61944(4)	0.80563(6)
Ce_2IrIn_8	0.80602(8)	0.61993(9)	0.80562(11)
La_2RhIn_8	0.80631(5)	0.61788(5)	0.80364(9)
La_2IrIn_8	0.80527(5)	0.61833(5)	0.80368(9)

Figure 1. Unit cell of Ce_2RhIn_8 . Gray, black, and white circles represent Ce, Rh, and In atoms, respectively.**Figure 2.** Structures of the $n = 1, 2, \infty$ members of the $\text{Ce}_n\text{RhIn}_{3n+2}$ family. White circles represent In, black circles represent Rh, and gray shading represents Ce cubooctahedra.

creases. This compensates for the decrease in $(\text{Ln} - \text{In}2)$ and avoids extreme cubooctahedra distortions.

The ratios of $(\text{Ce} - \text{In}3/\text{Ce} - \text{In}1)$ and $(\text{Ce} - \text{In}3/\text{Ce} - \text{In}2)$ describe the degree of structural distortion in the cubooctahedra of Ce_2MIn_8 . For both $\text{M} = \text{Rh}$ and Ir , $(\text{Ce} - \text{In}3/\text{Ce} - \text{In}1)$ have identical deviations (0.0064) from unity, as shown in Table 4. The $(\text{Ce} - \text{In}3/\text{Ce} - \text{In}2)$ ratio is closer to 1 in the Rh compound than in the Ir compound, indicating that the cubooctahedra in Ce_2RhIn_8 resembles the cubic structure of CeIn_3 more so than Ce_2IrIn_8 . Thus, Ce_2RhIn_8 is more 3D and more like CeIn_3 than Ce_2IrIn_8 . Similar to CeRhIn_5 , the less distorted local geometry in Ce_2RhIn_8 may be related to why it orders magnetically whereas Ce_2IrIn_8 does not. The La-In distances are slightly larger in the Ce analogues, as expected, due to lanthanide contraction. Similar trends in the $(\text{La} - \text{In}3/\text{La} - \text{In}1)$ and $(\text{La} - \text{In}3/\text{La} - \text{In}2)$ ratios are found for the La analogues. This trend has also been observed for the LnMIn_5 ($\text{Ln} = \text{La, Ce}; \text{M} = \text{Rh, Ir}$) subfamily.²¹

Figure 3. Electrical resistivity (ρ_0) as a function of temperature (T) for Ce_2RhIn_8 and La_2RhIn_8 .**Figure 4.** Magnetic susceptibility M/H as a function of T , measured at 1000 Oe. Circles represent CeRhIn_5 , squares represent Ce_2RhIn_8 , and crosses represent CeIn_3 . Open symbols are for applied field parallel to the crystallographic c -axis and solid symbols are for H perpendicular to c . The inset shows the polycrystalline average of these data ($1/3[\chi_{\parallel} + 2\chi_{\perp}]$) in comparison to those of cubic CeIn_3 .

Relation of Structural Parameters to Physical Properties. *Resistivity.* The temperature dependence of the electrical resistivity of the Ln_2MIn_8 family is qualitatively similar to that of LnMIn_5 . In particular, for the La variants, the resistivity is that of a normal metal, whereas for the Ce variants one observes resistivity that is relatively temperature independent above a characteristic temperature $T \sim 20$ K before becoming more metallic.³ Representative data for Ln_2RhIn_8 are shown in Figure 3.

Strikingly, the residual resistivity (ρ_0) of Ce_2RhIn_8 ($\rho_0 = 55 \mu\Omega\text{-cm}$) is 2 orders of magnitude larger than that of CeRhIn_5 ($\rho_0 = 0.4 \mu\Omega\text{-cm}$); similar differences are observed in the La analogues. This effect is much more significant than any observed variations as a function of homologous series in a particular structure type. We speculate that this increased resistivity results from the buckling of the $\text{Ln} - \text{In}3$ layer. The $\text{In}3 - \text{Ln} - \text{In}3$ bond angles are provided in Table 3. In Ce_2RhIn_8 , Ce and In3 no longer reside in the same $a - b$ plane, and the $\text{In}3 - \text{Ce} - \text{In}3$ angle is no longer 180° as in the CeRhIn_5 . The $z\text{Ce}$ coordinate is 0.80704(3) while $z\text{In}3$ is 0.80563(6), resulting in the formation a $179.40(2)^\circ$ $\text{In}3 - \text{Ce} - \text{In}3$

Table 3. Select Interatomic Distances (Å) and Bond Angles for $\text{Ln}_n\text{MIn}_{3n+2}$ ($n = 2$; $\text{Ln} = \text{La, Ce}$; $\text{M} = \text{Rh, Ir}$)

	Ce_2RhIn_8	Ce_2IrIn_8	La_2RhIn_8	La_2IrIn_8
Within LnIn_3 ($\text{Ln} = \text{La, Ce}$) Cuboctahedron				
$\text{Ce}(\text{La})-\text{In}1$ ($\times 4$) (Å)	3.3001(5)	3.3242(7)	3.3520(5)	3.3593(5)
$\text{Ce}(\text{La})-\text{In}2$ ($\times 4$) (Å)	3.2748(4)	3.2565(10)	3.3060(6)	3.2915(6)
$\text{Ce}(\text{La})-\text{In}3$ ($\times 4$) (Å)	3.3211(3)	3.3029(4)	3.32215(14)	3.3277(5)
In3–Ce(La)–In3 Angle (°)	179.40(2)	179.83(5)	178.86(4)	179.32(4)
Within MIn_2 ($\text{M} = \text{Rh, Ir}$) Rectangular Polyhedron				
In2–In2 (<i>c</i> -axis)	2.9255(9)	2.925(2)	2.9107(13)	2.9138(13)
In1–In1 (<i>a</i> - <i>b</i> plane)	3.3001(5)	3.3029(4)	3.32199(14)	3.3276(5)
M–In2 ($\times 8$) (Å)	2.7541(3)	2.7556(6)	2.7633(4)	2.7675(3)

Table 4. Ln–Ln Bond Distances in LnIn_3 ($\text{Ln} = \text{La, Ce}$) Cuboctahedra

	Ce–In1 (Å)	Ce–In2 (Å)	Ce–In3 (Å)	Ce–In3/Ce–In1 (Å)	Ce–In3/Ce–In2 (Å)
Rh	3.3001(5)	3.2748(4)	3.3211(3)	1.0064(2)	0.9981(1)
	3.3242(7)	3.2565(10)	3.3029(4)	0.9936(2)	1.0142(3)
Ir	La–In1 (Å)	La–In2 (Å)	La–In3 (Å)	La–In3/La–In1 (Å)	La–In3/La–In2 (Å)
	3.3520(5)	3.3060(6)	3.32215(14)	0.9911(1)	1.0049(2)
Ce	3.3593(5)	3.2915(6)	3.3277(5)	0.9906(2)	1.0110(2)

angle. Buckling of the Ln atom is increased in the nonmagnetic La-analogues. For example, the In3–La–In3 angle measures 178.86(4)° in La_2RhIn_8 , almost 1° smaller than its Ce analogue.

Magnetic Susceptibility. The magnetic susceptibility as a function of temperature for $\text{Ce}_n\text{RhIn}_{3n+2}$ ($n = 1, 2, \infty$) is shown in Figure 4. In each case, the susceptibility is approximately what is expected from a Ce $J = 5/2$ local moment, namely Curie–Weiss susceptibility at high temperature with μ_{eff} close to $2.54 \mu_B$ ($\mu_{\text{eff}} = (8C)^{1/2}$ and $\chi = \chi_0 + C(T + \theta)$). Specifically, for field applied perpendicular to the crystallographic *c*-axis, $\chi_0 = -0.00019(1)$ emu/mol, $C = 0.807(5)$ ($\mu_{\text{eff}} = 2.534(5) \mu_B$), and $\theta = -70.7(8)$ K; for field parallel to the *c*-axis, $\chi_0 = -0.00035(2)$ emu/mol, $C = 0.899(7)$ ($\mu_{\text{eff}} = 2.674(7) \mu_B$), and $\theta = -18.2(8)$ K.

For the tetragonal compounds, magnetic anisotropy is observed, and this anisotropy is larger in single-layer CeRhIn_5 than in Ce_2RhIn_8 . Interestingly, if one performs a polycrystalline average of the data ($\chi_{\text{poly}} = 1/3 (2\chi_a + \chi_c)$), the data for all three compounds are nearly identical. This indicates that although structural layering modifies the magnetic character of these compounds, the overall effect is rather small. The evolution of the magnetic ordering temperature, on the other hand, is something of a mystery: naively, one would expect T_N to evolve in the order of CeIn_3 , Ce_2RhIn_8 , CeRhIn_5 , consistent with decreasing 3-D character. However, one finds $T_N(\text{CeRhIn}_5) > T_N(\text{Ce}_2\text{RhIn}_8)$. This is presumably due to differences in the electronic structure of these materials, which are also reflected in the propagation vectors of the ordered magnets. CeIn_3 and Ce_2RhIn_8 have nearly the same magnetic structure, whereas the structure of CeRhIn_5 is more helical and 2-D.⁷ The low-temperature heavy-fermion ground states of CeMIn_5 and Ce_2MIn_8 ($\text{M} = \text{Rh, Ir}$) have been studied using specific heat measurements and are least affected by

the structural layering. The γ values are 400 mJ/mol Ce K² for both CeRhIn_5 and Ce_2RhIn_8 , and 720 mJ/mol Ce K² and 700 mJ/mol Ce K² for CeIrIn_5 and Ce_2IrIn_8 , respectively.² These observations are consistent with the fact that hybridization is a relatively local effect; the local Ce coordination is not changed between the $n = 1$ and $n = 2$ members of the $\text{Ce}_n\text{MIn}_{3n+2}$ family.

Conclusion

The structure, magnetic, and transport properties clearly show that the $\text{Ce}_n\text{MIn}_{3n+2}$ family ($n = 1, 2, \infty$; $\text{M} = \text{Rh, Ir}$) becomes more three-dimensional as one progresses from $n = 1 \rightarrow \infty$. The key structural feature of the $\text{Ln}_n\text{MIn}_{3n+2}$ family lies within the LnIn_3 cuboctahedra. In particular, the half of the cuboctahedra closest to the MIn_2 layer is most significant. Ratios of Ce–In and Ce–Ce distances explain the dimensionality and anisotropy observed in magnetic susceptibility measurements. This is consistent with magnetic structure studies of $\text{Ce}_n\text{RhIn}_{3n+2}$ where the cubic CeIn_3 building blocks have a stronger influence on magnetic correlation than RhIn_2 .⁷ In addition, the Ce buckling within the cuboctahedra contributes to increased resistivity for both the Ce-based and La-based materials.

Acknowledgment. R.T.M. acknowledges Dr. Xiaogang Xie for his help with the SEM/Microprobe analysis. Work at LANL was performed under the auspices of the U.S. Department of Energy. J.Y.C. acknowledges the Louisiana Board of Regents, PRF-G, and NSF for partial support of this project.

Supporting Information Available: Crystallographic data in CIF format are available for Ce_2RhIn_8 , Ce_2IrIn_8 , La_2RhIn_8 , and La_2IrIn_8 . This material is available free of charge via the Internet at <http://pubs.acs.org>.

CM021063E